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Summary 

Calculations were performed by two group methods to determine the 

critical concentration, neutron balance and conversion ratio in a two-region 

reactor» The reactor had the following geometry: a four foot diameter 

spherical core of uranyl sulfate dissolved in heavy water is contained in 

a shell of stainless steel surrounded by a two foot thick spherical blanket 

containing thorium and heavy water» Two stainless steel core shells, l/8 

inch thick and l/k  inch thick were considered. For each core shell, three con- 

centrations of thorium were supposed: 1000 g thorium per liter (as a slurry 

of thorium oxide), ^218 grams thorium per liter (as pellets of thorium oxide), 

and 7000 grams of thorium per liter (as spheres of thorium metal). For cal- 

culation purposes the thorium distribution was considered homogeneous in 

all cases. Further, it was assumed that the reactor was free of poisons and 

that no multiplication occurred in the blanket. Thus, the only materials con- 

sidered present were uranyl sulfate, heavy water, stainless steel, and thorium 

(as oxide or metal). A complete tabulation of results is to be found on page 15. 

Theory of the Calculations 

1. Introduction 

The calculations were performed using the methods and nomenclature of 

S. Visner (CF-51-10-110). Since the process by which the calculation sheets 

displayed on pp. 51 ff. of that report were obtained is discussed in outline 

only, the authors of this memorandum considered it useful to provide readers 

with a more extensive treatment. Much of the material presented here was 

obtained by private communication with Dr. Visner.  Considerable reference 

was made to "The Elements of Nuclear Reactor Theory," by Glasstone and Edlund, 

Chapter VIII. 



The procedure used was the following: the differential equations for 

the fast and slow fluxes in the core and blanket were written. The boundary- 

conditions used were? 1) continuity of fast and slow fluxes at the inter- 

face between core and blanket; 2) vanishing of fast and slow fluxes at the 

outside edge of the reactor; 3) continuity of the blanket and core fast 

currents at the interface; k)  a balance of slow currents at the blanket-core 

interface to include shell absorption; and 5) finite, non-negative fluxes 

exist everywhere in the reactor. Given the reactor dimensions, the necessary 

cross sections, and core and blanket compositions, it is possible to calculate 

the permissible thickness of the shell which will allow criticality. The flux 

distributions were obtained in terms of the radius variable and a multiplicative 

factor A, whose magnitude would depend upon the reactor power. We then can 

calculate a neutron balance based upon one neutron being absorbed in an atom 

of Jy^»    This balance gives us the conversion ratio (atoms of tr^ produced 

per atom of 1^35 destroyed) as well as fast and slow leakages and absorptions. 

While no calculations were made to include effects of poisons and blanket 

multiplication, it is possible to consider such factors given the information 

contained here. 

2. Derivations (See table of nomenclature, p. 16 ) 

A. Core equations 

The usual two group equations are written for the core; 

-
D

PC v2 0TC - kc ^sc szsßC + rFC ^,c = o (l) 

2 
-W  0SC + ^sc i^sc-^FC ^FC   =0 <2) 

The assumption is made here that the resonance escape probability for 

the core is unity, since the core solutions have a very high moderator-to-fuel 

ratio. 



We note that if we eliminate 0FC between equations (l) and (2) we 

obtain the equation: 

Kc -^-sc c 

Dsc ^"Vr; , T, —y ^ + Dpc 
•sc 

V2 fi sc ^cC = ° (3) 

If we eliminate 0  between (l) and (2) we obtain: 

»«r »vr.    V *   4_1_ 
kc 2:Sc 

FC " iT 
-^-sc 

V2 0FC->- ^FC 0FC = ° ^) 

The coefficients in (3) are identical with those in (k).    We may rewrite (3) and 

(k)  as follows: 

^ ^sc - [Bsc2 + BFC
2] V2 0SC + [1 - k^ B8C

2 BFC
2 0SC = 0 

Bsc2    BFC2    ^FC    =0 
VHC-[V + BFC*]V2    ^ + [l-g 

where   BFC
2    =   _-■=,■_EC      (See Glasstone and Edlund,  p.  228,  2*H) 

(5) 

(6) 

(7) 

B. sc 
sc 

■'SC 

Equations  (5) and (6) may be factored as follows: 

(8) 

(V  2 -Brc
2)(   V2 + B.c2)     0sc    ,0 

(V 2 -Brc
2)(   V2 + Bic2)     ^    =0 

where Brc
2    = R + BR

^ + B^ 

■R    2    _    p      Bsc    + BFC
2 

Bic      -    E  

-]/p£4 B- 'FC ̂
T2" 

+  (kc - 1)    B    2   B; 'FC sc 

(9) 

(10) 

(11) 

(12) 

U3) 



V2 fan -Brc
2 Kn = 0 

Solutions of the four -wave equations: 

^FC "Brc ^FC 

^sc-Brc2 *« 

*FC + Bic2 ^FC 

2 A       . -n 2 

V2 ^„.-B 2 0SC = 0 

V 2 fan +  B, 2 J*L, = 0 

(1*0 

(15) 

(16) 

V2 0sc + Bic^sc - 0 (17) 

are solutions of the original equations (l) and (2). Thus, the sum of solutions 

to (Ik)  and (16) is a solution of (2) and the sum of solutions to (15) and (17) 

is a solution of (l). We note that the solutions have the form: 

0SC = ^ sin Bicr + £1 cos Bicr + 1 sinh Brcr + 11 cosh Brcr (18) 

0       4 I I                 Alll 

. FC = V Sin Bicr + ~  cos B-t„r + z.—    s 
r x<- r 

inh B-.-r + 1111 cosh Brcr      (19) "re 

As r approaches zero, terms containing cosh and cos become infinite while the 

others approach finite limits. Since by the boundary condition (5) stated in 

"the introduction to the derivation, the fluxes are everywhere finite, the 

coefficients A", B', A"1, and B'" must be identically zero. We have then: 

0SC = | sin Bicr + 1 sinh Brcr (20) 

0FC = r^" ein Bicr + —• sinh Brc^ (21) 

Only two of the constants A, B, A", B" are independent. Since permissible 

solutions of (2) are - sin Bicr for 0SC and £11 sin Bicr for jZipQ we find by 

substitution in (2) that 

a.    = A" - Dsc V* + Blc
2 

BFC* 

and in similar fashion 

a  =111_ Isx: arc   B " Dj-c 
BSC ~fic 

(22) 

(23) 
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B. Blanket equations 

The blanket equati one are 

y2 0JB ~Bm   $m + 

PB 
^SB 
%B 

i^SB = 0 (210 
•MS   ^TB 

v2 ^SB-BSB20SB + ^    :D
2*B =° (25) 

Note that the resonance escape probability is not neglected in the 

blanket. 

»IB2 - *"'ra +
^"HB (26) 

FB    ~    n*Z    =    -D^T (27) 

2 
%B 

1 
Ti = 

Pro 

^EB. 
%B 

^RB 

i<B   -S=f (28) 

BSB  = "^r (29) 

In obtaining solutions to (2k)  and (25) the procedure is similar to that used 

for the core equations. Two fourth order differential equations are formed 

by substituting 0^ from (25) into (2k),  and by substituting 0gB from (2k) 

into (25). These are solved in the same manner as the core equations to 

yield: 

^SB = ~ sinh BiBr + ^7" cosh B^r + |^- sinh BrBr 

6'' + ___ coab. -Q^J. 
(30) 

^EB = ^-J-   B±nb- Bj^r + Kill, cosh BiBr + 9111 sinh ByBr 

Qt I I I 
+ —-— cosh Bj.Br 

(3D 
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where 

* 2 - BiB " 

3rB 

!ZB L_?SB_ 

Bg32 + BSB2 

2 
+ S 

S-"V^>fM%B2-Bra
aBBB2 + 

PB 

Bra + BSB 

(32) 

(33) 

(3*0 

Note that since kß/pg   4.1 and, by {2.6), B^g2    ^ K j^, S ie always less 

[(BJB
2
 + BSB

2
)/2]  . than 

We note now that the fast and slow fluxes vanish at the extrapolated 

radius of the reactor. Since this radius for a large reactor is very close 

to the actual radius, little is sacrificed in accuracy and a considerable 

saving of labor is achieved by saying that the flux vanishes at the actual 

outside radius. Hence ■* 

0_ (r = ag) = — sinh B^ a^ + 111 cosh B^ &Q + SI sinh BrB ag 
^^ ap ap ap 

G" (35) 
+ g— cosh Brg &2    = 0 

0 (r = ag) = 11— sinh B^ ap + E' cosh Bjjg &2 + 

*2 

Bo 

cosh B3.3 a2 = 0 

ag 
sinh Brg a~ 

(36) 

We now establish the coupling coefficients between E' and E1", E" and 

E"", G* and G"*. G" and G"". We know that permissible solutions 

E'             E' *' 
of (2^) and (25) are — Sinh BiBr and   sinh B^r for slow and fast 

fluxes respectively. Since V2 0SB = BiB2 0SB> (a result of the factoring 

process upon the fourth order equation in 0j^)> (25) becomes: 
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_ 2 E' P -pi 
%B  — sinh BiBr - Bgg^ £_ sinh B-^: SB 

sinh Bj^r = 0 

Similarly we obtain 

(37) 

«iBE' (38) 

E,'"=E" *£(*$  """^"«fflE" (39) 

« s(!fcad)--—■• 
Now let 

E1 = -E cosh BiBJ (1+2) 

E" = E sinh B^J (43) 

G* = -G cosh BrBK (44) 

G'» = G sinh BrBK (1+5) 

Then 

0SB = f sinh BiB (J - r) + f sinh BrB (K - r) (46) 

, E Q 
0FB = aiB F siDh BiB (J - r) + arB - sinh BrB (K - r) (47) 

We know that j^ = 0-^g = 0 at r = ag. Therefore 

E sinh B^ (j - ag) =  - G sinh BrB (K - ag) (48) 

a^g E sinh BiB (J - a^)  = arB G sinh BrB (K - a2)               (49) 

a^g E sinh B^ (J - ag) = arB E sinh B^ (J - &Q)                                     (50) 

Since aiB and a^-g are necessarily unequal, J = &Q  if E is not zero. 
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If E were zero, it follows that either G Is zero (a trivial solution) or 

K = s.0»    In general both G and E will be unequal to zero. Hence J = K - ag 

and we have 

0gg = I sinh Bjj (ag - r) + <£ sinh BrB (a2 - r) (51) 

0pB = ^S E sinh BJJ (a^ -  r) + "rB G sinh BrB (a2 - r) (52) 

3„ Application of Boundary Conditions at the Interface Between Begions 

Since we assume continuity of the fast and slow fluxes at r * a-^ we 

obtain the two equations 

A Slc + C Src - E Sa -0 SrB= 0 (53) 

aic A Sic + arc C Src " aIB E S1B " arB G SrB = 0 (5*0 

We assume next that the difference between the slow current in the 

blanket and the slow current in the core at r = a^ is equal to the number of 

neutrons absorbed per square centimeter of shell surface per second: 

" DSC 

This leads to the equation 

DSC A { CiC + ßSic) + DSC C <°rc + esrc> " °SB <E ciB + G °rB) = ° W 

We next say that the fast currents in core and blanket are equal at 

r = aj. This yields a fourth equation 

D^Kc A C±c + C arc Grc) - D^E ajjB C^ + G Cfcg CrB) = 0 (57) 

If we have specified the compositions and dimensions of the core and the 

blanket we have in equations (53)» (51»-), (56), and (57) a system of four 

homogeneous equations in A, C, E, and G. To have a consistent set of solutions 

for these unknowns, the determinant of the coefficients must be zero. This 

is the critical equation for the reactor. If we set the determinant equal 



to zero and solve for ß, we obtain after some algebraic manipulations: 

P   Y + Z 

This enables us to get the shell thickness which will allow the reactor to be 

just critical. 

Dividing (53), (54), and (57) by A gives the system 

(58) 

Src Ä ' SiB    £    ~ SrB   £      = ~ Sic 

C        -.      ~        E        _      „        G arc Src    I    " aiB siB   J    " «rB srB   £      =~«ic sic 

«re Crc   ä   - txujcr, C^   I   -arB crp CrB   £     -aic Cic 

(59) 

(60) 

(61) 

c 
I 

"Sic -SiB "SrB 

-aic sic      ~a±B siB -«rB srB 

-aic Cic     <ta of Cm       -arB <TF crB 

Src -SiB ~SrB 
arc Src -«IB siB -«rB srB 

a     C re    re "aiB °i CiB -«rB °F CrB 

1 1 1 

aic «IB °rB 
C 
A 

_sic SiB SrB 
Src SiB srB 

aic uic aiB^F U1B «rB °W urB 
1 1 1 

re aiB arB 

rc    re aiB ^F üiB "rB ^i  UrB 

(62) 

(63) 
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(6k) 

0               1                 o 

aic ^iB            aiB                  "rB "«IB 

£ - !i£ «ic U^ -<XiX0~v ^m   a^^UiB             QVB^F UrB - aiB°F u1B 
A   src 0                 0                   1 

arc "«rB           
aiB "«rB             arB 

1 

«re Urc -arB°F urB   aiB°F UiB "^OrB ^rB  cr, Oj.B UrB < 

A    Src 

(eg - ai)  _ S^  Z 
(bi - ch)    Src  Y 

(65) 

In similar f ashions 

1 - SL: A    siB 
(66) 

A   .SrB 

N 

Calculation Procedure 

(67) 

1. Nuclear Constants 

The nuclear constants used were the same as those cited by Visner in 

CF-51-10-110 0 Material constants derived from these were calculated by the 

methods described therein« For the present purposes, it was assumed that 

there were 3 $ voids in the core. It was also assumed that whatever the 

blanket mate rial considered, it would be in a sufficiently dispersed form 1 

to allow the blanket to be thought of as homogeneous0 

\ 
The constants used for the various blanket materials are listed in 

the followin g table; The assumed temperature was 250°C» The moderator 

was heavy water» 
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1000 G Th/l 
(sluny) 

421Ö g Th/1 
(Th02 pellets) 

7000 g Th/1 
(Th metal balls) 

Dgg,  cm. 1.152 1.01535 0.984568 

Djg,  cm. 1A29 1.05018 O.966684 

T,KB>  cm°" 4.619 x 10"3 14.11516 x 10" -3 20.9612 x Kr3 

TB»   cm-2 186.8 256.508 274.66 

2 SB'  CnU_1 13.526 x 10"3 56.95894 x 10" ■3 94.4914 x 10"3 

The large number of significant figures shown were employed only to 

insure a high degree of consistency in the calculations, and are not in- 

tended to convey any false impressions concerning the accuracy of the constants. 

The stainless steel shell was estimated to have a macroscopic cross 

section of O.183 cm."1 at 250°C 

The Th02 pellets were assumed to have a density of 8 g/cm
3 and that 

the blanket was composed of 6o# ThOo and 40# heavy water by volume. Th 

metal density was taken as 11.664 g/cm3 and the. metal balls were also assumed 

to occupy 60$ of the blanket volume. 

2. Procedure 

Typical calculation sheets are displayed on p. 51 ff. of CF-51-10-110. 

We find a value of ß (equivalent to finding a shell thickness) such that the 

determinant of the coefficients of equations (53), (54), (56) and (57) is 

zero. This value of ß is given by equation (67)0 We repeat the calculations 

until we find the desired shell thickness, changing the core concentration 

in the process. For example, in our work we wished to find the critical 

core concentrations corresponding to shell thicknesses of l/8 inch and l/4 

inch. Several core concentrations were guesged, and the corresponding shell 

thicknesses were computed. Then by extrapolation or interpolation the 

value of the core concentrations corresponding to-1/8 inch and l/4 inch 
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thicknesses were obtained. 

At this point, the calculations can be subjected to two checks: 

equivalence of fast fluxes in core and blanket at a^, and equivalence of 

slow fluxes in core and blanket at a-^ These are obtained from the 

equations; 

Y = M + N - Z (slow flux) (68) 

(Crc + ßSrc) C -Og (C^ E + CrBG) = -Cic -ßSic (fast flux)   (69) 

To calculate the neutron balance, the reactor is said to operate at 

that power at which A ~  1. At this power we calculate the volume integrals 

of fast and slow flux in core and blanket. These are multiplied by the 

macroscopic cross sections of the materials in the reactor regions to give 

numbers of neutrons absorbed per second per cm3 in tr3', VT*  , 1^0, Th, etc. 

Having these numbers, the leakage rate and shell absorption figures, we can 

calculate how many neutrons are absorbed or leaked in any fashion per neutron 

absorbed in an atom of U235. The sum of all these numbers gives a final check, 

for the total number of neutrons absorbed or leaked in any way per neutron 

absorbed in tf^5 must equal the number of neutrons produced by fission per 

absorption of a neutron in U235„ This last is simply 

n =,/ *f (25) (70) 

where l/= 2.5 and the cross-sections are thermal. 

This last check is valid, provided the reactor is thermal, as is assumed 

in the calculation of k . 
c 

The necessary formulas for calculating the neutron balance are easily 

derived; 
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1. Shell absorption.  (It is assumed that the shell captures only- 

slow neutrons.) 

0SC <al> = ^ sin Bic al + §" sinh Brc al W 

C_ 
1  xv-  a-^ ~rc ä~ sic + 7T   S an  ic  a-  ■ 

For Asl, 

Shell absorption = kit  a^2 ZBa *' 08c (al) ^2^ 

- ^ ßDßc [Sic + C Sr3 <73) 

Since the t« cancels out when the balance is calculated, it was dropped 

in the calculation sheets of CF-51-10-110. 

2. Leakage of fast and slow neutrons. 

For the slow flux; 

Positive current at a2 = £jp - ?sB  £|§1 .  j. 

Negative current at ag - £jp + !!§&. ^fil , » 

It is assumed that no neutrons which leave the reactor ever return 

Combining (7k)  and (75): 

Positive current of slow neutrons at a2 = --SB—i—£ . 

Total slow leakage = kic&^  0sB (r = e^)/^ (7^) 

We cannot say here that 0BB (a2) = 0, but we use the more exact formula 

for the flux; 

0sB - 5 sinh B^ (a2 + Es - r) + | slnh BrB (ag + Es - r)       (77) 

Hence 

Slow leakage = i ag (E sinh B^ Es + G sinh ByB EB) (78) 
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In similar fashion we may obtain 

Past leakage 

= 2 a2 (E aiB sinl1 BiB % + arB G sinl1 B B ^t^ ^) 

Note that the kn  is dropped from (78) and (79) as it was from (73). 

3» Integrated fluxes. 

F„„ = - Cic. +  c crc (80) 
Bic      Brc 

'« " -«c^* «re  ^p (81) 

FSB - - r^ (Bis "2 + ciB) " iT? (BrB *2 + CrB)     (82) 
BiB ^tB 

FpB = " «IB  ^ (BiB »2 + CiB> - -^    (BrB ^ + CrB)  (83) 

Ibese were obtained merely by integrating the flux equations (20), (21), (51), 

and (52) over the proper reactor regions. 
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TABLE OF NOMENCLATURE 

1. V 2  =  Laplacian operator. In spherical coordinates with no angular 

dependence equal to 

a2 * _!.  J_ 
dr? +  r   dr 

2. r   =  Eadius variable, cm. 

3. 0FC  =  Fast -^lux in the core, neutrons per cm
2 ner second. 

k.    0gc  =  Slow flux in the core, neutrons per cm
2 per second. 

5. 0™ = Slow flux in the blanket, neutrons per cm2 per second. 

6. <f>m = Fast flux in the blanket, neutrons per cm per second. 

7. Dpg = Fast diffusion coefficient in the core, cm. 

8. Dsc = Slow diffusion coefficient in the core, cm. 

9. Dgg = Slow diffusion coefficient in blanket, cm. 

10. DpB  =  Fast diffusion coefficient in blanket, cm. 

11. TB  =  Fermi age in blanket, cm2. 
p 

12. f   =  Fermi age for core, cm. 

13. Z sc =  Macroscopic cross section for absorption of slow neutrons 

in the core, cm-1. 

Ik.     y-nr   -      Macroscopic cross section for degradation of fast neutrons 

to slow neutrons in t, 

15. X™, =  Macroscopic cross section for degradation of fast neutrons to 
FB 

slow neutrons in the blanket, cm"1. 

16. Xgg =  Macroscopic absorption cross section in the blanket for slow 

neutrons, cm" . 

17. ^EB =  Macroscopic absorption cross section in the blanket for fast 

neutrons, cm . 
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18. kc  =  Infinite multiplication constant, in the core. 

19. kg  =  Infinite multiplication constant for the blanket. 

20. pjj  =  Resonance escape probability in the blanket. 

21.  B
2

FC =   i/rc 

2 22. Bsc  = ^SC^SC 
23. E2  = [-(B2gc + ^g  2    + (kc _ i} ^ B; 

A. B2ic = R- [(B2SC + B2FC)/2] 

25. B2rC - R + [(B2SC + B
2
FC)/2] 

26. aic  - DSC(BSC
2 + B^2)/^^ 

27. Oj-c      = Dsc^SC2 - BrC^/Dj^FC2 

28. ^ ra = i/rB 

29. BSB
2
    o ^SB/D^B 

30. /   rB - Zm/Bm 

31- S25B    = ^ « + ^'KB 

2 
PC 

32.     S2        =      *E t 2
m    B2SB " B2

FB 
B2SB    + fr*ffl + B2

SB)/2] 

33-    B^2    =     [(BpB2    + BgB2)/^]   - S 

3^.    BrB
2    =      [IB^B

2
 + BSB

2
)^"!   + S 

35« ai   =  RadiuB of core, cm. 

36. a   =  Radius of blanket, cm. 
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37. t» = a2 "ai 

38. att = D
SB

(B
SB

2
 " »u^fora ^m  ) 

39. arB = DSB(BSB
2
 '***)\togB,*m) 

*>•   slc = Sin BiC &± 

M« SiB = Blnh BJJ t» 

1*2. Tlc = BIC al C0S BiC al 

43- CiC = TIC " SiC 

1A. Ulc = Cic/SiC 

*5." TIB = BiB al cosh B1B *' 

w- C1B = -TiB " SiB 

Vf. u0 = CiB/StB 

W. ^ =3 D
SB/

D
SC 

49. srC = Sinh Brc a1    .   ■ 

50. srB = Sinh BrB t
1 

51. TrC = BrC a1 cosh BrC a1 

52. CrC = TrC " SrC 

53- UrC crC/SrC 



5k.    TrB      =      BrB &1 cosh BrB t» 
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55«    CrB 

56.    U, rB 

57. S 
58. a 

59. b 

60. c 

61. d 

62. e 

63. f 

61).. g 

65. h 

66. i 

67. m 

68. n 

69. r 

70. s 

■■■rB      DrB 

CrB/SrB 

WD
FC 

aiC " aiB 

=      «re " arB 

arB " aiB 

UlC-°iUlB 

UrC " °~S UrB 

= ^(UrB " U1B) 

=      aiC UiC " °P aiB UiB 

"      «rC UrC -°~? "rB UrB 

- ^«rB UrB -°~F 
aiB UiB 

aiC " arB 

aiC UiC -°i" arB UrB 

aiB " arC 

°F alB UiB " arC UrC 
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a  b   c 

71. X d  e   f 

Shi 

■ 

72. Y = 
b   c 

h   i 

■ 

73. Z = 
c   a 

i   g 

7*. M = 
m  h 

n   b 

75- N = 
a   r 

g   s 

76. t = Core tank thickness, cm. 

77- "^■sa = Macroscopic absorption cross section for absorption of core 

tank wall, cm" . 

78. ß = 
al ^sa * 
DSc 

79- A A coefficient (see equation 18, p. 12 ) arbitrarily set equal 

to unity. 
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8o. C        £i£  _L 
srC   Y 

o            S1P    N 81. G   =   -*£     
SrB    * 

82. E   =   !iC_  JL 
SiB    * 

83» Eg   =   2.13 Dgjj, slow extrapolation distance, cm. 

8U. E„  = 2.13 Dj£, fast extrapolation distance, cm. 

85. ^tFgp = Volume integral of slow flux in core. 

86. ^JtFpQ = Volume integral of fast flux in core. 

87. hitYgß = Volume integral of slow flux in blanket. 

88. kit?—  =  Volume integral of fast flux in blanket. 
JÜ3 

EPO 903623 


